Minimal Model Program
Learning Seminar.
Week 41.
Sarkisou Program
Maximal Morn fiber spaces.

The Sarkisov Program:
Theorem: (Z, Φ) is a kit prog pair with $k_{z}+\Phi$ piet Assume $Z \xrightarrow{\phi_{1}}, X_{1}$ and $Z-\xrightarrow{\phi_{2}}, X_{2}$ are two minimil models. $\Delta_{i}=\phi_{i} * \Phi$. Then $X_{1} \cdots X_{2}$ is a composition of $\left(k x_{1}+\Delta_{1}\right)$-flops.

Q: (Z, Φ) is a kit pros pair with $k z+\Phi$ not prof.

How can we factor $X \longrightarrow Y$?

Def: Two MFS are Sarkisov related if both of them are obtained by a MMP from Z.

The 1.1: $\phi: X \longrightarrow S$ and $\psi: Y \longrightarrow T$ MFS with Q- fact sing. Then X and Y are birational
they are connected by a sequence of Szrkisov links.

Motivation:

$$
\begin{aligned}
C_{r}(n)=\operatorname{Br}\left(P^{n}\right) . \\
\varphi \in \operatorname{Bir}\left(1^{\infty}\right)=: C_{r}(2) .
\end{aligned}
$$

$$
\varphi=\psi_{1} \circ \ldots \circ \psi_{s}
$$

simpler elements in $\mathrm{C}_{1}(2)$.

Noether - Castelmuvo: $\left.\operatorname{CrC}_{2}\right)$ is generated by PGL(3,G) $+\underline{\text { Cremona }}$ trina

$$
\begin{gathered}
\mathbb{P}^{2} \longrightarrow \mathbb{P}^{2} \\
{[x: y: z] \longmapsto\left[x^{-1}: y^{-1}: z^{-1}\right]=[y z: x z: x y] .}
\end{gathered}
$$

1983: Gizatullin: Gave a description of the relations
1927: Hudson: $\operatorname{Cr}(3)$ is not generated by element of bounded degree
Q: What are the generators of $\operatorname{Cr}(3)$?
Corti proved that the sankisor program works in $\operatorname{dm} 3$.

$$
\begin{aligned}
& \mathscr{L}_{x} \subseteq X \xrightarrow{\sigma} \rightarrow \underset{W_{1}}{Y} \\
& \sigma_{1} \downarrow \quad \mathscr{L} \text { linear system. } \\
& \mathcal{L}_{x_{1}} \subseteq X_{1}
\end{aligned}
$$

How the sing of $\mathscr{L}_{x} \& \mathscr{L}_{x}$ compare?
canonical threshold a preff threshold.

Sarkisov Links:

Lime of type I.
Limes of type III are the reflection of type I limes

Link of type II:

Link of type IV:

Sarkisor of the Cremona:

Maximal Mort fiber space structure:
Def: X kilt \& projective is said to be 2 max MFS
it X admits a MFS structive and every K_{x}-negative extreme carve of X indies a MFS.

Q: Let X be proj kit with K_{x} not pref.
Is X birational to a maximal MFS?

Idea of the proof:

$$
S=B l_{\text {pig }} \mathbb{D}^{2}
$$

Cone of effective divisors is generated by $L_{1} E_{1} \& E_{2}$

Ambient space $Z, V \subseteq N S(Z)$ linear sobs de over a
$\zeta_{A}(V)=\left\{\Theta=A+B \in V_{A} \mid K_{z}+\Theta\right.$ is I_{c} and $\left.B_{z} 0\right\}$
$\varepsilon_{A}(v)=\left\{\Theta \in \mathcal{L}_{A}(v) \mid k_{z}+\Theta\right.$ prof $\}$.
$f: z \ldots x$ we define
$A_{A, f}^{(v)}:=\left\{\Theta \in \varepsilon_{A}(v) \mid f\right.$ is ample model for $\left.(Z, \Theta)\right\}$

$$
C_{A, f}:=\overline{A_{A, f}(V)}
$$

Theorem 3.3: There are finitely many $f_{i}: z_{i} \rightarrow x$ satisfying the following:
(1) - $A_{i}:=A_{A, f:}$ is a partition of $\varepsilon_{A}(x)$?

- Ai is a finite union of inlenors of rat polytopes.
- If $f i$ is birabional, then $C_{i}=\ell_{A, s}$ is rations
(2) $\left.\begin{array}{l}A_{j} \cap C_{i} \neq \phi, \text { then there is a contraction morphism } \\ f_{i, j}: X_{i} \longrightarrow X_{j}, f_{j}=f_{i, j} \circ f_{i} .\end{array}\right\}$ bf the.

Assume V spans the Neron - Sever.
(z) Connected component \mathcal{C} of $C_{\text {; }}$ that intersects $\mathscr{L}_{A}(x)$.

Then TFAE:
(4) © int $($ bn di $), \quad f: Z \ldots X \log$ terminal mad t.

$$
\text { Ce spans V. } f=f_{j}, A_{i} \cap A_{j} \neq \phi, A_{i}=A_{j}, i=j \text {. }
$$

ii) If $\Theta \in A_{i} \cap C$, then f_{i} is a log terminal mod l of $K_{7+}+\infty$ iii) f_{i} is birational and X_{i} is Q-factond. \& log terminal models are bar
(4) Ce; spans V and Θ is general in A, Dee and lies] in the interior of $\sigma_{A}(x)$. Then the relative Picard of $f_{י j}: X_{i} \rightarrow X_{j}$ equals $\operatorname{dim}\left(l_{i}\right)-\operatorname{dim}\left(l_{i} \cap l_{j}\right)$

Notation: $\Theta=A+B$ is in the boundary of $\varepsilon_{A}(v)$ and in the inters of $\kappa_{A}(y)$.
$\tau_{1}, \ldots, \tau_{k}$ polytopos C_{e} of $\operatorname{dim} 2$ contrary Θ.

$$
\begin{aligned}
& \theta_{0}=T_{1} \cap \partial \varepsilon_{A}(x) \\
& \theta_{K}=T_{K} \cap \partial \varepsilon_{A}(V) \\
& \left(\theta_{i}=T_{i} \cap T_{i H}\right.
\end{aligned}
$$

$f:: Z \rightarrow X_{i}$ ample model ass to T_{i}
$g_{i}: Z \longrightarrow S_{i}$ ample model ass to \mathcal{O}_{i}.

$$
\begin{aligned}
& f=f_{1}: z \rightarrow x . \quad g=f_{k}: z \rightarrow r, \quad x^{\prime}=x_{2}, r^{\prime}=x_{k, 1} \\
& \phi: x \longrightarrow s=s_{0} . \quad \psi: r \rightarrow T=s_{k}
\end{aligned}
$$

$Z \rightarrow R$ ample model of $k z+\Theta$

Thu 3.7: $K_{z}+\Phi$ kit and $\Theta-\psi$ amplo.
Then ϕ and ψ are two MFS which are outputs of $\left(K_{7}+\Phi\right)-$ MMP which are by a Sancisov lime if
(A) is contained in more than two polytopes.

Proof: Commutative heptagon

Both ϕ and ψ are MFS + outcomes of $\left(K_{z}+\Phi\right)-$ MAP's.
(3.3) we can prove $\rho\left(X^{\prime} / R\right)=2, \quad \rho\left(Y^{\prime} / R\right)=2$

$$
\begin{aligned}
& \left\{\begin{array}{l}
-p \text { is a divisorial contr }+s=i d, \text { or. } \\
\cdot
\end{array} p \text { is a flop }+s\right. \text { is not the identity. }
\end{aligned}\left\{\begin{array}{l}
\cdot q \text { is a divisorial contr }+r=i d \text {, or } \\
\cdot q \text { is a flop }+r \text { is not the identity. }
\end{array}\right.
$$

Lemma 4.1: $\phi: X \rightarrow S$ and $\psi: \gamma \rightarrow T$ are Sansisou related MEs assocized to (X, Δ) and (Y, Ω)

We may find $f: Z \cdots, X$ and $g: Z \rightarrow Y$, $(Z, \Phi), k \mid t$, A ample on Z, V two dimension l in WDrver (Z) such that:
(1) if $\Theta \in L_{A}(x)$, then $\Theta-\Phi$ ample,
(2) $A_{A, \phi \cdot f}$ and $A_{A, A_{0}}$ are not in $\partial L_{A}(V)$,
(3) V satisfies $(1-4)$ of The 3.3.
(-1) Ce Ait and Clang are 2-dim, and
(5) Ce A, pot and Co A, yoga are 1 -dim

Proof of 4.1:

- Replacing with a log resolution, we may assume (Z, ϕ) is \log smooth and f and g are morphism.
- Add divisor to the bounder, so the components of the boundary span the Neron-Sevori:
$A, H_{1} \ldots, H_{k}$ ample sit $H_{1} \ldots . H_{k}$ genercle $N S(z)$

$$
H=A+H_{1}+\ldots+H_{k} .
$$

C in S ample. D in T ample
$-\left(K_{x}+\Delta\right)+\phi^{x} C$ and $-\left(K_{Y}+\mathcal{I}\right)+\Psi^{2} D$ are ample
Pick $0<\delta<1$ such that.
$-\left(K_{x}+\Delta+\delta f_{*} H\right)+\phi^{*} C$ and $-\left(K_{x}+I+\delta g+H\right)+\psi^{*} D$ ample $K_{z}+\Phi+\delta H$ is f-neg and g-neg. Assume $\delta=1$.

Pick $\Phi_{0} \leqslant \Phi$ sit $A+\left(\Phi_{0}-\Phi\right)$ ample

$$
\begin{aligned}
& -\left(K_{x}+f_{1} \Phi_{0}+f_{*} H\right)+\phi^{*} C \\
& \left.-C K_{x}+g_{*} \Phi_{0}+g_{0} H\right)+\psi^{*} D \\
& \quad K_{z}+\Phi_{0}+H \text { is } \quad f-\text { neg and } g-n g \text { small ency }
\end{aligned}
$$

Pick $F_{1} \geq 0, G_{1} \geq 0$ Q-general

$$
K z+\Phi_{0}+H+F+G \text { kIt, where } F=f \cdot F_{1} \& \quad G=y * G_{1}
$$

$$
V_{0}=\Phi_{0}+\left\langle H_{1}, \ldots, H_{k}, F, G\right\rangle
$$

$$
\begin{aligned}
& \Theta-\Phi=\underbrace{\left(A+\Phi_{0}-\Phi\right.}_{\text {ample }})+\underbrace{B-\Phi}_{\text {net }}
\end{aligned}
$$

V_{0} satisfies $(1-4)$ of (3.3).
Finally, we need to cut down the dimension of V_{0}.
Proof of 1.3: $(Z, \Phi), A$ and $V 25$ in 4.1.
$\Theta_{0} \in A_{A, \phi \circ f}(V), \quad \Theta_{9} \in A_{A, \psi \circ g}(V)$ in the int of $f(x)$.
(Θ), there are finitely points Θ, is contained in more than two polybopes Ceaiti (V).
(3.7) implies that the correspondry $\sigma ;, X \ldots Y$ is compontion of Sakisor links.

